Network Farthest-Point Diagrams
نویسندگان
چکیده
Consider the continuum of points along the edges of a network, i.e., an undirected graph with positive edge weights. We measure distance between these points in terms of the shortest path distance along the network, known as the network distance. Within this metric space, we study farthest points. We introduce network farthest-point diagrams, which capture how the farthest points—and the distance to them—change as we traverse the network. We preprocess a network G such that, when given a query point q on G, we can quickly determine the farthest point(s) from q in G as well as the farthest distance from q in G. Furthermore, we introduce a data structure supporting queries for the parts of the network that are farther away from q than some threshold R > 0, where R is part of the query. We also introduce the minimum eccentricity feed-link problem defined as follows. Given a network G with geometric edge weights and a point p that is not on G, connect p to a point q on G with a straight line segment pq, called a feed-link, such that the largest network distance from p to any point in the resulting network is minimized. We solve the minimum eccentricity feed-link problem using eccentricity diagrams. In addition, we provide a data structure for the query version, where the network G is fixed and a query consists of the point p.
منابع مشابه
On Farthest-Point Information in Networks
Consider the continuum of points along the edges of a network, an embedded undirected graph with positive edge weights. Distance between these points can be measured as shortest path distance along the edges of the network. We introduce two new concepts to capture farthest-point information in this metric space. The first, eccentricity diagrams, are used to encode the distance towards farthest ...
متن کاملVoronoi Diagrams for a Moderate-Sized Point-Set in a Simple Polygon
Given a set of sites in a simple polygon, a geodesic Voronoi diagram partitions the polygon into regions based on distances to sites under the geodesic metric. We present algorithms for computing the geodesic nearest-point, higher-order and farthest-point Voronoi diagrams of m point sites in a simple n-gon, which improve the best known ones form ≤ n/polylogn. Moreover, the algorithms for the ne...
متن کاملRealizing Farthest-Point Voronoi Diagrams
1 The farthest-point Voronoi diagram of a set of n sites 2 is a tree with n leaves. We investigate whether arbi3 trary trees can be realized as farthest-point Voronoi di4 agrams. Given an abstract ordered tree T with n leaves 5 and prescribed edge lengths, we produce a set of n sites 6 S in O(n) time such that the farthest-point Voronoi di7 agram of S represents T . We generalize this algorithm...
متن کاملFarthest line segment Voronoi diagrams
The farthest line segment Voronoi diagram shows properties different from both the closest-segment Voronoi diagram and the farthest-point Voronoi diagram. Surprisingly, this structure did not receive attention in the computational geometry literature. We analyze its combinatorial and topological properties and outline an O(n log n) time construction algorithm that is easy to implement. No restr...
متن کاملEfficient Farthest-Point Queries in Two-terminal Series-parallel Networks
Consider the continuum of points along the edges of a network, i.e., a connected, undirected graph with positive edge weights. We measure the distance between these points in terms of the weighted shortest path distance, called the network distance. Within this metric space, we study farthest points and farthest distances. We introduce a data structure supporting queries for the farthest distan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JoCG
دوره 4 شماره
صفحات -
تاریخ انتشار 2013